第20回人工知能学会金融情報学会での発表

感情によるマルチモーダルAIを利用したIPO株価推定

1.研究の動機

従来の経済学では、需要と供給によって決まった価格を判断基準として、人間は売買行動を実行している。一方、感情によって売買行動をとるという研究も存在している。非言語の情報が株価にどのような影響を与えるのだろうか。価格以外の要因によるIPO時の株価変動について検証する。

2.研究発表の対象 研究概要

音声・画像・テキストなど、複数のデータからマルチモーダルな学習モデルを構築し、新規上場企業のインタビュー動画と株価変動の相関について検証。登壇者の表情や声色、発表内容から、株価の変動を予測する。
番組全体のデータが翌営業日の価格変化に相関があるかをSVM・ロジスティック回帰を使用して検証する。
番組放送中のデータが一分足の価格変化に相関があるかをRandom Forest・XGBoost・DNN・LSTMを使用して検証する。

3.ストックボイスTVについて(IPO)

STOCK VOICE TVとは、新規株式公開等に際して、企業の代表者などが自社の事業計画等を発表する放送である。放送時間約13分で、大方の放送は後場に開始する。

4.データ準備

Ⅰ. ストックボイスのサイトをスクレイピングし必要情報を抽出
Ⅱ. YouTubeから動画データを一括取得
Ⅲ. YouTubeからⅡの会社証券コード・会社名・上場日等の必要情報をプログラミングにより取得・作成
Ⅳ. ストックボイスTVの動画を映像と音声に分離
Ⅴ. 1分足の検証のため、ダウンロードした動画を1分ごとに分割
Ⅵ. 区切った動画をGoogle Speech APIに入力しテキストを取得
Ⅶ. 1分毎に区切った音声をGoogle Speech APIに入力し、テキストを取得
 一分準備データ
Ⅷ. 日足評価用に全体音声、テキストを用意
Google Webストレージに音声データをアップロードし、テキスト表現を取得

4.各種特徴量抽出・株価データ準備

・テキストデータは、Google Emotionによって特徴量抽出する。
・音声データは、感情特徴量を利用する。 パワー・MFCC
・映像データは、一分評価用・全体評価用ともに5秒ごとに特徴抽出Microsoft Emotion APIを利用する。(複数人の場合は平均を取得)

5. SVM(Support Vector Machine)

SVMの最大の特徴は、マージン最大化を行うことである。マージンの最大化により、比較的データ量が少ない場合でも汎化性能を高めやすい。カーネルトリックを用いることで、非線形に拡張することが可能である。

5. Random Forest

Random Forestでは決定木を大量に生成し、以下のように出力を決定する。
→分類問題:多数決
→回帰問題:平均値
また、各特徴量の重要度を算出することができる。
参照:https://aichamp.wordpress.com/2017/03/09/treatment-of-categorical-variables-in-h2os-drf-algorithm/

5. XGBoost

XGBoostは、Kaggleと呼ばれる、データ分析のコンペティションが多数開催されているプラットフォームでよく使用される。GBDT(Gradient Boosting Decision Tree)を使用していて、計算速度やモデルの予測精度の面で優れている。R, Python等で利用可能である。

5. LSTM(Long Short-Term Memory)

LSTMは文章や音声等、時系列データを扱うことができるRNNsの拡張である。RNNsの勾配消失問題が緩和され、長期依存する時系列も扱える。Tensorflow, Chainer等のフレームワークで比較的楽に実装することが可能である。 参照:https://becominghuman.ai/only-numpy-deriving-forward-feed-and-back-propagation-in-long-short-term-memory-lstm-part-1-4ee82c14a652

6.検証(日足)

・データ:ストックボイスTVから取得した196社分のデータ
196社のうち、123社がIPO銘柄、73社がNew Stage銘柄
全データのうちテストデータの割合が2割の場合、3割の場合の検証をした
またIPO銘柄のみの場合、全銘柄を使用した場合の検証もした
・モデル:ロジスティック回帰・SVMを使用
・予測:翌営業日の株価が上昇しているか否か
・評価指標:2値分類の正答率

6.結果(日足1,日足2)

IPO銘柄のみでの検証結果は、銘柄数が少ないため、結果にばらつきが生じた。ロジスティック回帰がSVMを上回る結果となった。
IPOとNew Stage銘柄での検証結果は、銘柄数が少ないため、結果にばらつきが生じた。IPO銘柄のみの場合よりも、予測精度の平均値が低かった。

6.結果(日足の考察)

日足の検証結果のうち、平均値を以下にまとめた。ロジスティック回帰は53%の水準である。登壇者の表情等がIPO時とNew Stage時で異なる可能性がある。

6.結果(1分足)

・データ:ストックボイスTVから取得した138社分のデータ
・予測:放映中における各1分間の株価変動を予測
クラス0:株価の変動が1pip以内の場合
クラス1:株価の変動が1pipより上昇
クラス2:株価の変動を1pipより下落
ストックボイスTVの放映中に株価の変動がない場合は、次に株価の上昇・下降があった時点の価格や、公募価格を参考にする。
・評価指標:3クラス分類の正答率

6.検証(1分足)

1分足での検証結果は、LSTMはテストデータの予測精度が非常に悪かった。すべての手法においてOverfittingしているように見える。(学習データとテストデータの値差)
下図はXGBoostの予測結果である。

6.検証・結果

一分・Xgboost70%の精度AIが予測した値が一番よかった会社が以下の会社である。
証券コード 6195:ホープ 上場日 2016/6/15
放送開始後上がり続けている。(動画を参照)

7.考察

改善ポイント
・発話区間を区切り、意味のあるコンテクストに変更 (ひとまとまりの発話内容が終わった次点の1分足の予測)
・映像を解析し、プレゼンのOCR読み取りを行い、内容を解釈することにより価格推定に結び付ける
・発話内容を感情ではなく、決算短信や有価証券報告書などで推定する