blog

第6回「製造業界における需要予測のAI活用事例とは?」

販売計画から始まる作業

製造業界における出発点は、「生販在計画(生産計画を作成する事)」です。この業務は、「販売計画」を立てる事から始まります。販売計画は主に販売部門で作られるものであり、市場のトレンドや過去の実績、競合他社の動き、企業全体の生産計画といったトータルの要素を鑑みながら行われます。また、販売計画は期間・製品別に作成されるのが一般的です。

先ほど挙げた「要素」は、つまり「自社で製造する製品が、社会に対してどれだけ求められているか(需要があるのか)」という予想が中核となっています。これが、「需要予測」です。需要予測モデルについては、「単純移動平均」「移動平均」「一次指数平均」「二次指数平均」「直線・曲線近似」「自己回帰」「自己回帰移動平均」「自己回帰分移動平均」「ウインターズ」「ニューラルネットワーク」「重回帰」といったものが存在します。

製造業界は、そうした多様なモデルを使いこなしながら、自社の製品や状況に見合った需要予測を立て、その需要予測を軸に販売計画の作成へと移行します。その後、販売計画から在庫計画が、在庫計画から生産計画が、生産計画から基準生産計画が生まれます。これらを総じて「生販在計画」と呼び、製造業では欠かせないプロセスとなっています。

AIが導く需要予測

現在のAIテクノロジーは主に3つの得意分野を有しています。それは数値予測・ニーズ・マッチングなどを展開する事の出来る「予測機能」、情報判断・情報仕分け・音声識別・画像識別・動画識別・異常検知などを展開する事の出来る「分類機能」、作業自動化・表現生成・行動最適化などを展開する事の出来る「実行機能」です。このうち、需要予測に大きく貢献出来るのは「予測機能」となります。

需要予測でよく使われるシンプルな手法は「単回帰分析」です。AIテクノロジーがこれを担当する場合、機械学習を通じて製品の販売数の影響を与える因子を学びます。期待する結果が得られるまでは労力が必要ですが、学習が確立されれば非常に速やかに、かつ正確に需要予測を行う事が出来るようになります。

需要予測の精度を上げる事が出来る、しかもそれを高速で行う事が出来るという点が意味するものは、製造業(工場)のスタート地点を確実かつ効率的なものとして、生産体制全体を高度な状態に押し上げるものです。AIが導く需要予測の在り方は、今の製造業がまさに求めている革新のひとつに違いありません。

また、予測の精度を上げるには学習データの質も大切になります。弊社の研究の中に外観検査などにおいて効率的に高品質なデータを集められるロボットがあります。よろしければこちらからご覧ください。

撮影条件提案システム

お問い合わせはこちらからよろしくお願い致します。

ここまでご愛読いただきありがとうございました!

よろしければ弊社SNSもご覧ください!
Twitter https://twitter.com/crystal_hal3
Facebook https://www.facebook.com/クリスタルメソッド株式会社-100971778872865/

関連タグ一覧
[mailpoet_form id="1"]

Study about AI

AIについて学ぶ

  • 【次世代AIエージェント】アバターで人間らしさを実現するDeepAIの魅力と導入メリット

    本記事では、AI対話システムやDeepFake技術の最先端研究に携わる専門家が、国際人工知能学会での招待講演や多数の学会発表などの豊富な研究実績をもとに、AI技...

  • 有名人がAIで生まれ変わる!バーチャルヒューマン最前線と今後の可能性

    有名人AI

    有名人がAIで生まれ変わる!バーチャルヒューマン最前線と今後の可能性 本記事では、AI対話システムやDeepFake技術の最先端研究に携わる専門家が、国際人工知...

  • SNS集客を24時間稼働に!AIアバターが可能にするAI営業の新常識

    SNS AI

    SNS集客を24時間稼働に!AIアバターが可能にするAI営業の新常識 本記事では、AI対話システムやDeepFake技術の最先端研究に携わる専門家が、国際人工知...

View more