第14回「製造業が求める『設備保全』のAI活用とは?」

日本の製造業の未来に欠かす事のできないAIの諸相をお伝えするべく、「AIでコペルニクス的転回を迎えるモノづくり」と題し、これより全20回に渡ってAI解説記事をお届けしております。今回、第14回は「製造業が求める『設備保全』のAI活用とは?」に関するお話です。

人工知能(Artificial Intelligence)、すなわち「AI」と呼ばれる技術の基本的な考えは、1947年、数学者アラン・チューリングによって提唱されました。それから半世紀以上の歳月を経て、私たちのデジタル世界は大きく変容し、近年はAI技術が驚異なスピードで進化を遂げ続けています。私ども「クリスタルメソッド株式会社」も、そうしたAI技術躍進の黎明期、2008年頃から活動を開始し、「DeepAICopy」「対話型AI HAL3(ハルさん)」「Winry」「多機能深層学習アプリケーション」「2D/3D検知システム」等、多様な実用製品をお届けしております。

究極的に言えば、私たち人類は「辛抱強さ=効率性」と「冷静さ=正確性」を人の代わりに担ってくれるロボットやプログラムを求めています。AIは、まさにその「効率性」と「正確性」を同時に実現する革新的手段であり、今後の日本社会、特に製造業を牽引する存在になると、私どもは確信をしております。製造業の要のひとつの要素である「設備保全」の分野につきましても、AIは存分にその活用の存在感を示してくれます。

従来の設備保全の限界

従来の工場が持つリソース・手法において、工場の原動力となる「設備」を常に安全に保つ保全作業は、多くの点で限界がありました。何にせよ「人」「時間」「労力」というリソースが限られている工場では、設備の全数を確認する事、突発的なトラブルに全て瞬時に対応する事は不可能でした。

そこで、工場は自らが有しているリソースの限界点と、設備保全の品質の妥協点を鑑みながら、「浅く広い設備全数点検」を行っていました。細部まで確認は出来ませんので、表層的な最低限の保存のみの保全となっていました。それでも確実にトラブルが生じますので、トラブルが発生したら何とか事後対応するという形になりますが、労働集約で長時間労働が強いられる中でのトラブル対応は生産計画を崩すリスクを負っていました。

そのような状況であっても「熟練の技・経験」によって設備保全は何とか運用が行われて来ましたが、やはり不意の故障を完全に防ぎきる事は出来ません。トラブルが出れば先述の通り生産計画も壊れますし、また修繕コストの肥大も企業経営を圧迫します。生産ラインにとっては設備不良によって完全停止となれば大きな損失を免れません。完全に停止しなくても、不具合が出ただけでもダメージは相当のものでした。

センサーとAIタッグによる革新

「設備故障を未然に予知する自動システムはないか」「稼働中断の原因を可視化する事で生産効率を向上させたい」という従来のニーズを満たす革新として登場したのが、AIテクノロジーでした。IoT(モノとインターネットが繋がった事象)の技術でも稼働設備の状態を随時把握する事は出来ましたが、学習的・自律的にその状態を分析・共有・フィードバックするようなシステムはAIの登場によって実現の段階へ進んだのです。

現在、AI活用型の設備保全は、多彩なセンサー系機器から状況を「見える化」し、収集した時系列の環境ビッグデータを様々な技法によって要因分析を行います。深層学習によってAIの精度・効率性が上がるにつれ、設備保全に必要な「自動制御(異常検知・工程制御)」「製造管理(現状把握・遠隔計測)」という需要が満たされます。ここに、24時間フル活動出来る循環検査・突発故障予防のエキスパートが生まれるという訳です。

このように、AI活用による設備保全は、従来の「浅く広い設備全数点検」「無秩序な要員対応」から、「広く深い設備全数確認」「計画的・効率的な要員配置」へとシフトします。現場確認が主体だったものが遠隔監視に切り替わり、省人化・省力化が実現する事によって、設備保全で浪費されていた時間・労力を大きく回避出来るようになるのです。センサーの種類(振動・音声等)と設備環境の特徴(軸振動の有無等)がマッチするAI・IoT活用がなされれば、ここにスマート工場への大きな前進が生まれる事となります。

輝かしい製造業の未来へ向けて

私たちの全ての願いを叶えてくれる汎用AI(強いAI)の登場はまだ先の話になりそうですが、「深層学習(Deep Learning:ディープラーニング)」という人間の脳構造を模倣した「ニューラルネットワーク」の誕生により、着実に「AI自らが、学習の積み重ねによって、より高度な判断を行う」という技術が現実のものとなっています。医療分野を始め、自動運転・カーナビ・ノイズキャンセル・音声分離・ロボティックス・介護・ビジネスデータ・IoT・アシスタントAI(Amazon EchoやGoogle Home等)、生活のあらゆるシーンでの活用が広がっています。

その中でも製造業は、AIが強みとする「辛抱強さ=効率性」と「冷静さ=正確性」を存分に活かせる分野であり、そこに日本の輝かしい未来へと繋がる原動力が隠されています。既に私どもが実用化に成功している工業用検査(外観検査・欠品検査、異音判定等)のAIを含め、今後、ますますの技術革新への邁進を続けてまいります。私どもの製品にご関心がございましたら、どうぞ何なりとお問合せを頂ければと存じます。

以上、こちらが製造業AI解説特別連載「AIでコペルニクス的転回を迎えるモノづくり」、第14回「製造業が求める『設備保全』のAI活用とは?」に関するお話でした。続く第15回は「製造業のビッグデータにおけるAI活用の課題とは?」について取り上げさせて頂きます。

第5回 AI・人工知能 EXPO【春】

--------------------------------------------------
■「第5回 AI・人工知能 EXPO【春】」
公式サイト:https://www.ai-expo-at.jp/
会期:2021年4月7日(水)~9日(金)10:00~18:00
会場:東京ビッグサイト青海展示棟(商談可能)
主催:リード エグジビション ジャパン株式会社
参加料金:事前登録にて無料
後援団体:
一般社団法人 人工知能学会
一般社団法人 日本ディープラーニング協会
同時開催:
第2回 ブロックチェーン EXPO【春】
第1回 量子コンピューティング EXPO【春】

■弊社概要
会社名:クリスタルメソッド株式会社
公式サイト:https://crystal-method.com/
住所:〒102-0073 東京都千代田区九段 4 丁目 1-14 TL ビル 5F
代表者:代表取締役 河合 継
研究者:20 名以上
主な取引先:大手自動車メーカー、金融システム構築
展望:対話 AI「HAL」に向けた「意識」の導入
--------------------------------------------------